Low-Frequency Raman Spectroscopy of Few-Layer 2H-SnS2
نویسندگان
چکیده
منابع مشابه
Spatially resolved Raman spectroscopy of single- and few-layer graphene.
We present Raman spectroscopy measurements on single- and few-layer graphene flakes. By using a scanning confocal approach, we collect spectral data with spatial resolution, which allows us to directly compare Raman images with scanning force micrographs. Single-layer graphene can be distinguished from double- and few-layer by the width of the D' line: the single peak for single-layer graphene ...
متن کاملRaman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets.
We report on Raman spectroscopy of few quintuple layer topological insulator bismuth selenide (Bi2Se3) nanoplatelets (NPs), synthesized by a polyol method. The as-grown NPs exhibit excellent crystalline quality, hexagonal or truncated trigonal morphology, and uniformly flat surfaces down to a few quintuple layers. Both Stokes and anti-Stokes Raman spectroscopy for the first time resolve all fou...
متن کاملContrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe2
In this article, we report the first successful preparation of single- and few-layers of tantalum diselenide (2H-TaSe₂) by mechanical exfoliation technique. Number of layers is confirmed by white light contrast spectroscopy and atomic force microscopy (AFM). Vibrational properties of the atomically thin layers of 2H-TaSe₂ are characterized by micro-Raman spectroscopy. Room temperature Raman mea...
متن کاملProbing layer number and stacking order of few-layer graphene by Raman spectroscopy.
Graphene is a two-dimensional material defined as a planar honeycomb lattice of close-packed carbon atoms, where the electrons exhibit a linear dispersion near Dirac K points and behave as massless Dirac fermions. However, the valence and conduction bands in an AB stacked graphene bilayer split into two parabolic branches near the K point originating from the interaction of p electrons, and the...
متن کاملLow-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus.
As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-018-28569-6